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Abstract-Particulate media, among which some are porous, like fibers, powders, foams and others, are 
of considerable interest in many engineering applications. Heat transfer in such media is due to complex 
mechanisms involving interactions of radiation with conduction and/or convection. Improvements of the 
thermal performance of these materials, used, for instance, for thermal insulation, need a good under- 
standing of the physical phenomena involved, combined to an accurate knowledge of the the~ophysi~i 
properties responsible for these performances. This paper deals with the determination of the spectral 
properties: optical thickness, albedo and phase function shape parameters, that govern the radiative 
transfer in a semi-transparent medium. Results are presented for fiberglass and silica fibers-cellulose 

insulations. 

I. INTRODUCTION 

HEAT TRANSFER by combined conduction or con- 
vection with radiation through a participating med- 
ium capable of absorbing, emitting and scattering 
thermal radiation is a problem of great practical 
importance. This situation is well iliustrated by high 
porosity materials widely used in many industrial high 
technology applications and in building insulation. 
Although analytical or numerical techniques are avail- 
able for solving the coupled heat transfer problem, 
results are still uncertain because of the lack of well 
known spectral radiative properties, Various 
approaches to determine radiative properties have 
been employed by several researchers. Many papers 
were recently reviewed by McCormick [l] and by 
Petrov [2]. A brief literature survey shows two distinct 
approaches : (i) analytical determination of individual 
cylindrical or spherical particle radiative properties 
(Mie and Kerker theories) and a generalization 
accounting for the morphology of the medium ; (ii) 
experimental transmittance and reflectance deter- 
mination through an inversion of the radiative trans- 
fer equation to obtain the medium properties. The 
first approach frequently includes an experimental 
validation. 

The work of Lee [3] is a typical example of the first 
approach. It presents a formulation and an evaluation 
of the effective phase function for fibrous media with 
any particulary kind of fiber orientation or whose 
fibers are randomly oriented in space. Banner et al. 
[4] presented a study on the temperature dependence 
on the optical characteristics (complex index of refrac- 

t Permanent address : Mechanical Engineering Depart- 
ment, UFSC 88049, Floria&polis, SC, Brazil. 

tion) of the original solid material. The radiative 
characteristics, as extinction and backscattering 
coefficients and albedo, are obtained for the fibrous 
media. The calculated heat flux is compared with 
measurements performed in a guarded hot plate 
apparatus. The work of Jeandel et af. [S], focuses 
on radiative transfer for a layer of silica fibers with 
random azimuthal orientation. The theory of scat- 
tering from an individual fiber is used to obtain the 
abso~tion, extinction and backscattering coeflicients. 
Using the two-flux model, a radiative conductivity is 
calculated. Then, the effects of the fiber diameter on 
this radiative conductivity are analysed. Finally an 
ex~rimental validation on normal transmittance 
measurements is done with a spectrometer. 

Using the second approach, Yeh and Roux [6], have 
measured hemispherical reflectance of commercial 
fiberglass. The samples are placed on an Al foil. A 
FTIR spectrometer coupled to an integrating sphere 
allows the wavelength range from 4 to 19 pm to be 
covered. The radiative transfer equation is solved 
using the discrete ordinates method ; its inversion 
allows us to determine the absorption and scattering 
coefficients. Isotropic and anisotropic phase function 
models are taken into account. Some results of the 
extinction coefficient, for the 20-80 pm wavelength 
range, are also obtained applying Beer’s law to specu- 
lar reflectance data. Glicksman et al. [7] described 
a technique for the determination of the extinction 
coefficient, the albedo and the phase function values 
for foams and fiberglass. The extinction coefficient is 
calculated using Beer’s law. Neglecting the secondary 
scattering (only the primary scattering from an inci- 
dent laser beam is considered), a simplified solution 
of the radiative transfer equation allows us to obtain 
the albedo and phase function product in each 
measurement direction. Then, the normalization of 
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NOMENCLATURE 

A, ,jth Gauss quadrature weight I” spectral blackbody radiation intensity 
C, jth Gauss quadrature coefficient [Wm-3sr-‘] 
CN condition number 1” spectral collimated radiation intensity 
do, solid angle of the detected radiation incident onto the sample [W mm3 sr-‘1 

[sr-‘1 N number of measurement directions 
dw, solid angle of the collimated incident P phase function 

radiation [ST- ‘1 T, theoretical transmittance or reflectance 
F sum of the square errors, equation (10) value [sr _ ‘1 directional 

.f; weighting factor between forward and T, experimental transmittance or reflectance 
backward anisotropy in the phase value [sr ‘1 directional. 
function 

J; weighting factor between anisotropic and Greek symbols 
isotropic scattering B, any of the six parameters involved in the 

9 anisotropy factor in the Henyey- initial inverse problem 
Greenstein phase function 0 polar angle 

91 equal to g, in the forward direction 00 polar angle of divergence of the collimated 

92 equal to g, in the backward direction incident beam 
I spectral radiative intensity [W m 3 sr ‘1 P cos 0 
4 spectral collimated radiation intensity 7 optical coordinate 

[Wm.-‘sr-‘1 r” sample’s optical thickness 

I, spectral scattered radiation intensity Q albedo = scattering to extinction 
[Wm-‘sr-‘1 coefficient ratio. 

the phase function is used to separate both values 
from this product. The experimental set-up includes a 
CO2 laser (9.64 pm) and a bidirectional transmittance- 
reflectance apparatus. Finally a weighted scattering 
coefficient is calculated in order to use the diffusion 
approximation (Rosseland equation) in heat transfer 
problems. 

Kamiuto et al. [8-lo] and Kamiuto [1 1] have pre- 
sented a series of papers dealing with the optical thick- 
ness, albedo and the phase function identification. 
Henyey-Greenstein phase function model, with an 
asymmetry factor g, is adopted. The optical thickness 
is calculated directly using Beer’s law, applied to the 
collimated beam incident onto to sample. In such a 
case, scattering in the normal direction is estimated 
using transmittance data in the neighboring region. 
Albedo and g factor are identified by an inverse 
method. Sample materials studied are cordierite, 
porous Ni-Cr plates [8], packed-spheres [9, IO], or 
packed-spheres bounded by transparent plates [ 111. 
A bidirectional transmittance/reflectance apparatus is 
employed using a He-Ne laser (0.63 pm) as a radiation 
source and a photo-multiplier tube as a detector. 

Kuhn et al. [12] determined the scaled albedo and the 
mass specific extinction coefficient solving the radiation 
transfer equation with a 3-flux model. The samples 
analysed are powders placed on an horizontal film. A 
FTIR-spectrometer is used. The dependence of powder 
concentration on the extinction coefficient is shown. A 
dependent scattering is considered and corrections are 
adopted to account for such a dependence. 

Sacadura et a/. [I 31, Uny [ 141, Sacadura and Nicolau 

[ 151 and Doumenc [16], used an ordinary prism spec- 
trometer to measure transmittances and reflectances 
of fiberglass and carbon foam samples. An inverse 
method based on the Hooke and Jeeves minimization 
algorithm allows the extinction coefficient, the albedo 
and an one-parameter phase function to be obtained. 

In this work, the experimental set-up presented in 
refs. [13-161 is used to perform measurements on 
fiberglass and silica fiber-cellulose samples in the l-5 
pm wavelength range. First of all a description of the 
experimental set-up is done, followed by the pres- 
entation of the theoretical model employed. Dis- 
cretizations and other main features of the model 
solution are also presented. A sensitivity analysis is 
performed on a 6-parameter model, including optical 
thickness, albedo and a 4-parameter phase function. 
A condition number is introduced in order to simplify 
the parameter linear dependence analysis. Finally a 
direct method for optical thickness determination is 
discussed and some results for two fibrous materials 
are presented. 

2. EXPERIMENTAL SET-UP 

The experimental set-up shown in Fig. 1 allows the 
measurement of the incident radiation flux and of the 
radiation transmitted or reflected by the sample in 
different directions. 

A Pyroxm’ furnace, reaching 1600°C is used as a 
blackbody source. The radiation emitted from a small 
hole drilled through the furnace wall falls onto a 
spherical mirror and is reflected onto the mono- 
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PyrOX 
furnace 

transmitted beam 

I SM = spherical mirror; PM= plane mirror I 

FIG. 1. Experimental set-up. 

chromator entrance slit. The monochromator used is a 
NaCl prism model. A chopper disk modulates the 
beam before the monochromator. The mono- 
chromator exit slit selects a specific beam of wave- 
length I, with a Ai spectral resolution given by the 
prism and the slit width used. This radiation is 
reflected by a spherical mirror SM2, focused on the 
exit slit. Therefore, the reflected radiation forms a 
beam of nearly-parallel rays, with a divergence of half- 
angle O,, depending on the exit slit aperture and on 
the SM2 focal distance. This is the radiation incident 
onto the sample. The beam issued from the sample 
and detected is also a nearly-parallel beam, with a 
divergence of half-angle Od, depending on the detector 
sensitive area radius and on the SM3 mirror focal 
distance. It is important to notice that, for a correct 
measurement of the radiation intensity in the direction 
normal to the sample (scattered and collimated radi- 
ation), a detection half-angle tId, smaller than the col- 
limated half-angle O,, must be used. The third spheri- 
cal mirror SM3, focusing onto the detector cell, is 
used to concentrate the beam onto the detector. An 
InSb detector mounted on a rotating arm allows the 
measurement of the radiation transmitted or reflected 
by the sample at several angles. The sample mounting 
system includes a diaphragm used to limit the trans- 
mitted, reflected and incident radiation beams. 

The experimental bidirectional transmittance T,(B) 
for normal incident radiation is defined by the fol- 
lowing expression : 

T,(e) = +$ 
0 0 

where I is the transmitted or reflected intensity and I,, 
the intensity of the collimated beam normally incident 
onto the sample within a solid angle dw,. Thus Z, do, 
represents the incident radiation flux. This exper- 
imental set-up gives the transmittance data for differ- 
ent angles. The objective of this study is to determine 
the radiative properties of a sample which minimize 
the square of the differences between measured and 
calculated transmittances. 

3. ANALYSIS 

The design of the experimental set-up is such that 
the radiative transfer in the sample is one dimensional 
with azimuthal isotropy (case of incident radiation 
normal to the sample). The radiation transfer equa- 
tion (RTE), for a plane slab of a cold semi-transparent 
medium, with azimuthal isotropy can be written in 
the following form : 

(2) 

where p = cos 0 ; 0 is the polar angle ; Z, is the spectral 
intensity of radiation ; T” = /?G, /Iv = K, + Q, where pV, 

69 and oV are the spectral volumetric extinction, 
absorption and scattering coefficients, respectively, 
and x is a geometrical coordinate. The medium is 
characterized by the following spectral radiative prop- 
erties : the optical thickness z,, = pV L, where L is the 
geometrical thickness of the slab, the albedo w,, which 
is the ratio between the scattered and extincted radi- 
ation, and the scattering phase function p,($, p). 
The subscript (v) denotes a spectral quantity. 

In the RTE the radiation intensity in the medium 
decreases due to the absorption and out-scattering 
and increases due to in-scattering. The emission term 
is not considered in the RTE because the experiment 
uses a modulated radiation incident onto the sample, 
combined to a phase sensitive detection technique. 
So the detected flux is modulated and only the radi- 
ation transmitted or backscattered by the sample is 
measured. 

The choice of the phase function representation is 
a critical problem. A classical approach consists of 
developing this function in a limited series of Legendre 
polynomials. This approach may lead, in the case of 
some particulate media like fibers or foams, to very 
high order developments and, subsequently may 
require the determination of a large number of 
coefficients. An alternative solution proposed by 
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g2 
For&d scattering 

g’ 

FIG. 2. Phase function composition. 

Henyey and Greenstein (H-G) consists in represent- 
ing the phase function by the following function [ 141: 

(1 -$I d4 
x[l +g’-2g($~++(l -,U”)J(l -/L*)cos~)])J*’ 

(3) 

In this function C#J is the azimuthal angle which 
disappears once the integration is done ; g is the par- 
ameter which governs the anisotropy of scattering. It 
varies from 0 for isotropic scattering, to 1 or - 1 for 

forward or backward scattering, respectively. So, in 
respect to the parameter identification aims, the H-G 

function, which requires only one form parameter to 
be determined, seems to be an attractive approach 
[13]. However, in a previous work [15], the authors 
have shown that a unique H-G function is not an 
appropriate representation of scattering distribution 
for fiber or foam media, due to the simultaneous pres- 

ence of highly forward peaked scattering combined to 
a fair back-scattering, which is observed for this kind 

of material. 
Thus, in the current work, an attempt has been 

made to better represent the phase function by using 
a combination of two H-G functions coupled with an 

isotropic component : 

In this expressionf, and f2 are two parameters allow- 
ing us to weight the participation of the two H-G 
functions governed by the shape parameters g, and g2, 
respectively. The constant term (1 -,f2) is the isotropic 
contribution to the phase function. A schematic rep- 
resentation of this combination is shown in Fig. 2. 
This new model of the phase function implies that 
four parameters ranging in the interval (0,l) must 
now be identified : the forward g,, and backward, g2, 
anisotropy parameters and the fraction parametersf, 

and f2. Figure 3 shows a representation of equation 
(4) as well as of a single H-G function with the same 

g , coefficient. The values are approximately identical 
in the forward scattering region, but are quite different 
in the backward directions, for which only equation 

(4) is able to represent some back-scattering. Four 
coefficients in equation (4) are at least necessary to 
simulate a highly forward peaked scattering, com- 
bined to some backward and isotropic scattering. This 

is why such a phase function has been considered in 
the present work. 

4. DISCRETIZATION 

The radiation field is subdivided into a diffuse and 

a collimated component of spectral intensity Id and I,, 
respectively (in order to simplify the notations, the 
subscript v is omitted). The collimated component is 
the remaining quantity of the original incident radi- 
ation, after absorption and scattering by the sample. 
The incident beam, taken normal to the sample 
surface, is collimated with a small divergence angle B,. 

Accordingly equation (2) is applied for each intensity 
component. 

The governing equation for the collimated intensity 
I,(T) is the ordinary differential equation : 

dl, 

dr I’ 

with the initial condition I,(O) = Z,. I,, the incident 
intensity onto the sample, is a measured parameter. 
The solution is straightforward : I,(T) = I,, exp ( - 7). 

Thus the normal theoretical transmittance, for the 
collimated radiation, T,,, which is the ratio of the 
collimated output intensity to the incident radiation 
flux, is : 

em’ 
Ttc(7) = yjy’ 

0 

The governing equation for the scattered com- 
ponent of intensity I,(T,~) is : 
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gl=0.86 ft-0.98 fz-0.98 gz=-0.80 

-1.0 -0.5 0.0 0.5 1.0 

p=cos@) 

FIG. 3. The four parameters model compared to a Henyey-Greenstein phase function model. 

where p0 = cos 8,. The boundary conditions are : 

Z,(O+) = 0, for p > 0 (7a) 

ZV(zO+) = 0, forp CO. (7b) 

The set of equations (7) governing the scattered 
radiation field is solved by the discrete ordinates 
method which consists of replacing the inte- 
grodifferential equations by a system of linear equa- 
tions. This is carried out through an angular dis- 
cretization of the intensity field into 2n beams in the 
directions Z.L, (i = +l, . . ., fn, and p_i = -pi). It 
leads to the following set of equations giving the inten- 
sity for the 2n directions, at any position z in the 
medium : 

(84 

where : 

P(1,-k,)/--I*n I 

PI 
- [Al 1 (84 

(84 

where pi is the cosine of discretization direction i and 
6, is the Kronecker symbol. The approximation of the 
integrals of equation (7) by a finite sum is carried out 
numerically through a Gauss quadrature. The C, are 
the coefficients of the nth order quadrature formula 
used. The spherical space is discretized into n = 12 
directions for the positive range of p and n = 12 other 
symmetric directions for the negative ZL A first region 
in the interval 0<0<8, is used for collimated and 
forward scattering radiation measurements (cos 
Q1 = 0” ; /A, = 1). It is a unique region containing the 
original collimated radiation. Beyond this region, a 
half 10th order Gauss quadrature is used from 0 = 8, 
to 20”, in order to permit a concentration of exper- 
imental points in the neighborhood of the normal 
direction, suitable for forward scattering materials. It 
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concerns five directions. Finally a half 12th order 
Gauss quadrature is used from 0 = 20 to 90”. 

The particular solution of equation (8) is rep- 
resented in the form [w] e-l, where [w] is a vector of 
constant components ; its homogeneous solution is 
obtained through the calculation of the 2n eigenvalues 

i, and 2n eigenvectors I/,. Therefore, the complete 
solution for the scattered intensity is : 

?n 
I,[(z,j~,)l = C H,[V,,le~““+[Wle~‘. (9) 

,=, 

The boundary conditions lead to a set of linear 
equations whose solution provides the values of the 

constants H,. Putting r = 0 or 7O in the solution gives 
the intensity of the radiation backscatted or trans- 

mitted by the sample, respectively. These solutions 
divided by I,dw, provide the bidirectional trans- 
mittance, T,,, of the sample in the backward or for- 

ward directions. T,, corresponds to the scattered trans- 
mittance in the off-normal directions. For the normal 
direction, the transmittance component relative to the 

collimated radiation T,,, (equation (6)) must be 

added. Further details are given in equation (14). 

5. PARAMETER IDENTIFICATION METHOD 

With the experimental apparatus described in Sec- 

tion 2, a sample of a semi-transparent material can be 
used in order to determine the experimental trans- 

mittances and reflectances, T,,, for several measure- 
ment directions 0, and a given sample thickness. For 
the same directions and thickness, the mode1 described 
above in which the material radiative properties (r,,, 
o,p,) must be given, is used to calculate the theoretical 
transmittances and reflectances, T,,. Thus, the objec- 
tive is to determine the six parameters T,, w, g,, g2,f; 

and fi which minimize the quadratic error between 
the measured and calculated transmittances and 
reflectances over the N measurement directions : 

= ,r, [~,,(7”,~,g,,g,.J;~.f*)-~cil~. (10) 

Several search methods are available to minimize 
this function. One consists of drawing contour maps 

of F vs all of the involved parameters and determining 
from these maps a set of parameters leading to a 
minimum of F. This method was used to obtain two 
parameters, in Kamiuto’s work [8]. But it necessarily 
becomes tedious and uncertain if more parameters are 
searched. A second way [ 13-151, is the Hooke-Jeeves 
method, which is a systematic search method through 
the addition (or subtraction) of an increment to each 
involved parameter, until a minima1 value of F is 
reached. This method leads safely to a possible solu- 
tion, but is not able to detect a poorly-conditioned 
case, as in the search process. the sensitivity of the 
model to each parameter is not studied. A third 
method, used in this work, is the Gauss linearization 

method [17], which minimizes F by setting to zero the 
derivatives respect to each of the unknown 
parameters. At each step of an iterative process, the 
sensitivity coefficients are calculated and this provides 

an opportunity to detect possible linear dependcnces 
between these coefficients. If it is the case, it is imposs- 
ible to simultaneously determine all the parameters. 

The Gauss linearization method starts by estab- 
lishing a null derivative of F vs each parameter p,. 
j= I,..., 6, to be identified : 

1 =O; (11) 

where k denotes the iteration number in the iterative 

process. The Th+’ value, at iteration k+ I, is rep- 

resented as a function of the k iteration values : 

z T:,(. .,b;,. .)+ .‘. + Ap, i+‘+ “.. (12) 

After some algebraic manipulation the following 
matrix formulation is obtained : 

1 ____________________________________________________________ [ 

The solution of this system gives the increments 
A/I’+ ’ to be added to each parameter at each step of 
the’ iterative process. The source term, in the right 
hand side, gives the differences between theoretical 
and experimental transmittances and reflectances. The 

matrix on the left hand side is composed of the sen- 
sitivity coefficients products, calculated from the 
theoretical model ; it does not directly depend on the 
experimental values. This matrix can be used in the 
sensitivity analysis to verify possible linear depen- 
dences between the sensitivity coefficients calculated 
for each parameter. Since the sensitivity coefficients 
depend on the unknown parameters, the corrections 
set AD, that is obtained from this equation do not 
minimize the sum of the squared errors. It is necessary 
to perform an iterative process, in which at each step, 
the sensitivity matrix is evaluated, from the updated 
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FIG. 4. The normalized sensitivity coefficients for t, = 4. 

parameter values. The calculation of a condition num- 
ber of this matrix can be used to determine the degree 
of ill-posedness of the identification problem. Thus, 
the sensitivity coefficients are the key of the parameter 
estimation and must be carefully studied. Rather than 
looking at the sensitivity coefficient, it is preferable to 
study the normalized sensitivity coefficients Q, defined 
by: 

These normalized coefficients are calculated using 
back differences with the direct model. They are plot- 
ted in Figs. 4 and 5, fort, = 4 and 20 (which represent 
the usual limits of the optical thickness of such 
samples), and for a selected group of parameter 
values, vs the angular variable p = cos 0. The cal- 
culations were only performed for the 24 angular 
values that correspond to the measurement angles. 
The negative p are for the reflectance and the positive 
p for the transmittance. As Fig. 4 shows, the sensitivity 
of the measurements to r, is very weak except for the 
measurements close to the normal direction (0 = O”, 
p = 1). It means that the measurements far away from 
the normal are useless for determining 7”. The sen- 
sitivity coefficient for the albedo o is the largest, thus 
w will be the coefficient most accurately determined. 

gI, like r,, can be estimated only with the measure- 
ments close to the normal direction. On the other 
hand, the sensitivity tof, is the largest for reflectance 
measurements. The sensitivities to Jz and gz are 
smaller, those of g2 being almost zero excepted for the 
backscattering region. This indicates that it will be 
difficult to estimate g2. 

As the optical thickness is increased up to 20 (Fig. 

5), important modifications of the sensitivity 
coefficients are observed. The stricking point is the 
nearly linear dependence for the sensitivity coefficients 
of z,, f,, fi, g, and g2, which leads to a poorly con- 
ditioned system and, as a consequence, to difficulties 
for simultaneously estimating the six parameters. 

The ratio of the normal scattered transmittance to 
the collimated transmittance, plotted in Fig. 6 as a 
function of the optical thickness, for two g, values, 
can be used to explain the sensitivity coefficients vari- 
ations. It shows that the collimated transmittance is 
much larger when r0 is small : this is why the optical 
thickness sensitivity coefficient is large for such z, 
values. When z, is greater than 12, the transmittance 
ratio is larger than 1, thus the normal transmittance 
is influenced not only by r,, but also by fi, fi, .9, 
and gz. The sensitivity coefficients indicate that these 
influences vary very weakly with the angle, conse- 
quently the measurements at various angles do not 
help in estimating simultaneously the five parameters. 

After this analysis, it is not yet possible to determine 
the number of parameters to be identified. Although 
a linear dependence between two coefficients is not 
clearly apparent, such a dependence involving three 
or four parameters is possible, but not readily detect- 
able. In such a case, the condition number CN of the 
sensitivity matrix [C] (left hand side of equation (13)) 
must be used [ 181: 

WC) = IIC- ‘II * llcll (15) 

where the norm ]]C]] is calculated from the elements 

C,,,, as : 
6 

IlCll = ,?a;“, c c,,,. 
’ ,=I 

(16) 
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The condition number is greater than one. The 
larger the condition number, the worse the ill-con- 
ditioning: small changes in the right hand side of 
equation (13) i.e. in the measurements, result in very 
large changes in the solution vector, i.e. in the 
increments A/3,. It is then almost impossible to sim- 
ultaneously determine all of the unknown parameters. 
Poor conditionning occurs when at least two of the 
sensitivity coefficients are quasi-linearly dependent, or 
when at least one is very small or very large compared 
to the others. 

In Fig. 7, the condition number is represented as a 
function of the optical thickness, when several par- 
ameters are determined. The six parameter case cor- 
responds to the dete~ination of w, g,, f,, fi, gz and 
T,, ; the five parameter case to the Q, g,, f;, fi and g2 
determination, and so on. Obviously, the feasibility 
of an identification process is strongly dependent on 
the number of parameters to be identified. Figure 7 
shows that the larger the number of parameter, the 
larger the condition number. There is an exception 
for the six parameter case, for which the condition 
number is identical to the five parameter case as long 
as t, is smaller than 12, and then increases suddenly 
for larger r5,. This confirms the information given by 
the visual study of sensitivity coefficients which 
showed that simultaneous estimation of the six par- 
ameters was very difficult for large optical thickness. 
This figure also indicates that for any number of par- 
amcters, there is one z, optimal interval to perform 
the identification. If one wants to simultaneously 
identify the six parameters including z,, the optimal 
value is about 12. But this is not the optimal value to 
perform the identi~cation of five or less parameters 
other than t,. In such a case the recommended ru value 

is about 18. This means that it is preferable to identify 
r0 separately from the other parameters. 

6. DETERMINATION OF THE OPTICAL 

THICKNESS 

The optical thickness z, (and consequently the 
extinction coefficient), is an important parameter 
governing the radiation transfer phenomena. It 
directly quantifies the radiation attenuation in the 
medium and must be accurately determined. The pre- 
vious analysis showed that difficulties will arise for 
large values of r,,. Thus, a specific identification pro- 
cedure has been chosen in order to overcome this 
problem. It consists of determining z, alone, by a 
direct method, using only the radiation field in the 
normal transmission region. This direct determination 
has already been utilised by Kamiuto [8-l 11, Doum- 
enc [ 161 and Glicksman et crl. [7]. 

A numerical simulation has been performed to 
check that this direct method gives accurate enough 
results. First, the model with the six parameters is 
used to create a pseudo data set of transmittance 
measurements. Then, starting from these trans- 
mittance data, I, is determined using four different 
simplified models and the results are compared with 
the exact value. The first model is simply based on 
Beer’s law [7-I@ The total transmittance in the nor- 
mal direction is assumed to be equal to the cohimated 
one, which in fact means that multi-scattering in the 
medium is neglected. The other models, more elab- 
orated, also use Beer’s law, but different corrections 
are applied to extrapolate the scattered transmittan~ 
values in the normal direction. This allows the sub- 
traction of the scattered transmittance from the total 

m-20.0 w=0.95fl=O.90 fbO.95 gl=O.&Qg2=-0.60 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

I”” cos 8 

FE. 5. The normalized sensitivity coefficients for z, = 20. 
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FIG. 6. Normal scattered transmittance to collimated transmittance ratio, from a simulation using equation 
(9) as model. 
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FIG. 7. The condition number, vs t,, for a variable number of parameters identification. 

transmittance (given by measurement), to obtain a 
more accurate value of the collimated transmittance. 
In the so-called ‘constant model’, it is assumed that 
the scattered transmittance in the normal direction 

(0 = 0, = O’), is equal to the scattered transmittance 
in the closest measurement direction (0,). In the third 
model, a linear variation of the scattered trans- 
mittance is assumed between 8, and the normal direc- 
tion, to extrapolate the scattered radiation to 0, = 0”. 
This linear function is defined from two measurements 
corresponding to the closest directions (0, and 0,). 
Finally, a ‘second order’ model uses a second order 

polynomial for the extrapolation. The coefficients of 
the polynomial are calculated from the scattered 
transmittance in the two directions (0, and O,), and 
assuming, as a third condition, that the polynomial 

derivative is zero at 0, = 0”. 
The ratio of the calculated optical thickness to the 

reference value, Rz,, is presented in Fig. 8. A value of 
unity means that the simplified models are capable 
to determine the true optical thickness. As we can 
observe, the Beer’s law mode1 gives a poor estimation. 
This is the consequence of the absence of multi-scat- 
tering. The multi-scattering, weak and negligible for 
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Beer’s law 
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0 5 10 15 20 
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FIG. 8. Optical thickness ratio for different models. (Reference simulation using cu = 0.95: y, = 0.95; 
1; = 0.90 ; fz = 0.95 ; gZ = -0.60.) 

small z,, becomes very important for large ~~ values 

(Fig. 6). The original collimated radiation, which is 
very important for optically thin samples, becomes 
negligible when compared to the scattered radiation, 
for optically thick samples. For small or medium r, 
values, the ‘linear’ model provides a good estimation 
of the normal scattered transmittance and, sub- 
sequently, of the optical thickness. However, it leads 
to an overestimation of this transmittance for large r0 

(Fig. 8). This overestimated value may be greater than 
the transmittance measured in the normal direction 
and a negative collimated transmittance is thus 

obtained, which is not realistic. The results given by 
the ‘constant’ and the ‘second order’ models are very 
similar for 2 < T, < 15. The later model gives results 
which are only 5% in error for Z, = 20. Globally it is 

the most accurate one, so it has been chosen for the 
direct determination of z,. 

But this does not solve the entire identification 

problem. As a matter of fact, the sensitivity analysis 
showed that the sensitivity coefficients ofg,, g*,f; and 
,/i were almost linearly dependent. Numerical simu- 
lations showed that it was impossible to sim- 
ultaneously determine the five remaining parameters. 
Since g2 has the weakest sensitivity coefficient, which 

means that a variation of g- induces a smaller vari- 
ation of the transmittances than the variations of the 
other parameters, it was left over during the esti- 
mation process. However, a preliminary choice of g2 
value is needed. This choice can be seen as a possibility 
to impose a specific form to the phase function as well 
suited as possible to the backscattering phenomena to 
be represented. Consequently, the following identi- 
fication procedure is used : (i) a direct determination 
of the T” is carried out, using the ‘second order’ modi- 
fication of the Beer’s law model ; (ii) g2 is chosen ; (iii) 
the Gauss linearization method is used to identify w, 

,q,,,f; and&. 

7. EXPERIMENTAL RESULTS AND DISCUSSION 

A critical problem for this kind of experiment is the 
lack of energy in off-normal scattering directions. This 
is due to the important attenuation introduced by the 
samples and to the necessity of operating with small 
solid angles, in order to preserve the angular reso- 
lution of the measurements. Despite the radiation 
source high temperature (a 1600°C blackbody fur- 

nace) it was necessary to operate with large mono- 
chromator slits. So the experimental set-up allowed us 

to cover the 0.5-5.5 nm wavelength band with a 1 Ltrn 
spectral resolution. Thus the value of the parameters 
are given for the wavelength set 1, 2, 3, 4 and 5 pm. 
86 kg mm3 density fiberglass insulation samples of 1.7, 

2.3 and 4.0 mm thickness, have been tested as well as 
a 160 kg mm3 density composed sample (70% of silica 
fibers, 30% of cellulose) of thickness 0.3 mm. The 

characteristics of these samples are summarized in 
Tables 1 and 2. Transmittances have been measured 
for 1 I directions and reflectances for 6 directions. 

Figure 9 shows the optical thickness determined for 
the composed sample and for the 4 mm fiberglass 
sample. Even with the moderate resolution of the 

spectral measurements, the non-gray behavior of 
these materials can be observed. The scattering of the 
results is higher for the fiberglass sample, due to its 
high optical thickness value. Such scattering shows the 
limits of the experimental set-up for the transmittance 
measurements. 

Figure 10 displays the fiberglass sample albedo w 
and phase function parameters g,, f, and fi. Some 
variations with the wavelength are observed, with 
some dispersion in the data. This is a highly scattering 
material, with a forward concentration of scattering 
(high values of g,, f, and f2). The same parameters are 
shown in Fig. 1 I, for the composed sample. In this 
case the material is also a highly forward scattering 
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Table 1. Fiber diameter distribution for the fiberglass sample 

h-4 10 12.5 15 17.5 20 22.5 25 30 

% 2.5 7.5 35 15 15 17.5 5 2.5 

Table 2. Fiber diameter distribution for the composed sample 

4luml 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 

% 34.5 15.1 7.3 5.9 4.2 5.4 6.1 5.7 3.6 3.1 

Nwl 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 

% 2.5 1.9 1.6 1.1 0.6 0.5 0.3 0.1 0.2 0.2 

b 

25 

20 - 

f/ 

I 
I 

15 -, 
Fiberglass (411md % 

10 - 

Lb 

5- P P’ 
Composed sample (0,3mm) 

. 

OJ 

LO ZO 3,o 4,o 5,O 
Wavelength[pm] 

FIG. 9. Optical thickness for fiberglass (4.0 mm thick) sample and composed sample (0.3 mm thick). 
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FIG. 10. Albedo and phase function parameters of fiberglass. 
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FIG. I I. Albedo and phase function parameters of silica fibers-cellulose composed sample. 

one, with small differences in the parameters g, and 
t, compared to the fiberglass sample. 

The parameter g, has been introduced in order to 
distinguish the shape of the backward and the forward 
scattering, but was not identified from the exper- 
imental values. The influence of g2 on the objective 
function and on the other parameters are presented 
in Table 3. It shows that o is sensitive to the choice 
of gZ, but the influence on the other parameters is very 
small. However there is a value which minimizes the 
root mean squared error. For the present case and for 
both type of materials, it corresponded to a gI value 
nearly equal to g,. Since no prior information on the 
samples was available, it has been decided to choose 

Yr = .41. 
Figure 12 presents the extinction coefficient vs the 

sample thickness, for the fiberglass samples. These 
samples were sliced in the same direction and in the 
same block of a material assumed to be homogenous. 
So the extinction coefficient should not depend on the 
sample thickness. For thin samples (1.7 and 2.3 mm), 
good results arc obtained, but some scattering is 
observed for a 4 mm sample. As was already shown 
in Fig. 9, such scattering is a consequence of the high 
optical thickness value. 

Theoretical and experimental transmittance as well 
as reflectance values for each discretized direction are 

1 2 3 4 5 
Sample tIMmess [mm] 

FIG. 12. Extinction coefficient vs sample thickness for fiber- 
glass samples, i. = 4 jlm. 

compared in Fig. 13, for the composed sample and in 
Fig. 14, for the fiberglass sample. These plots represent 
two particular data series for a wavelength of 2 pm. 
In Fig. 13, for a rather moderate t, value, the trans- 
mittances are more important than the reflectances. 
The collimated transmittance overpasses the scattered 
one in the normal direction. In Fig. 14, the opposite 
situation is observed. It corresponds to an optically 
thicker sample, for which the backscattered radiation 
is higher than the transmitted one. The transmittances 
are weak, becoming of the same order of magnitude 

Table 3. Influence of the parameter ,qz on the others parameters and on the root mean square error, for a fiberglass sample, 
(1 = 3 /tm) 

.._~._. -.. 
.42 ---0.50 -0.60 -0.70 -0.80 -0.90 -0.99 

.-~...l ..__ 
II) 0.98 0.98 0.98 0.98 0.98 0.98 
.yI 0.92 0.92 0.9 I 0.89 0.88 0.88 
_; 0.93 1.00 0.95 0.97 0.97 0.96 0.97 0.97 0.98 0.98 0.98 0.98 

--. 

I.75 X 10-3 1.31 X 10-J 8.84 x IO-“ 6.00x IO-” 5.20 X 1o-4 5.31 X 10 j 
-____ 
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FIG. 13. Theoretical and experimental transmittances and reflectances values for the composed sample, 
(A = 2 pm). 
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FIG. 14. Theoretical and experimental transmittances and reflectances values for the fiberglass sample, 
(I. = 2 pm). 

as the measurement noise level. It is then difficult to 
determine t, since its determination is based on the 
differences between the normal and the neighbor 

directions transmittances. However both cases show 
a good agreement between the experimental and the 
calculated values. 

8. CONCLUSION 

A parameter identification method based upon a 
sensitivity coefficient analysis has been presented. To 
our knowledge, this is a new approach in the area of 
the semi-transparent scattering materials char- 
acterization. 

The sensitivity analysis has shown the difficulties of 
determining simultaneously the six unknown par- 

ameters. Such difficulties arise naturally from the 
choosen physical model, from the experimental col- 
lection of informations (number of measurement 
points and angular directions choice), and from the 
detector noise. However, it has been shown that a 
preliminary 7. determination by a direct method is a 
good approach. But, it still was not possible to esti- 
mate simultaneously the five remaining parameters. 
The one which has the smallest influence on the 
results had to be fixed, based on prior informa- 
tion. As a consequence the phase function model 
has been reduced to a three parameters model 
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and only four parameters have been simultaneously 
identified. 

An optical thickness determination, instead of the 
extinction coefficient, is more adequate, since it allows 
comparisons between materials of different extinction 
coefficients and samples with different thicknesses. 

This identification is possible for optical thickness 
value smaller than 13 or 14 (depending on the other 
parameters). Therefore, the choice of a sample thick- 

ness for an experimentation depends on the material’s 
extinction coefficient : it must be thin enough to obtain 
T<, under the above mentioned limit, but not too thin 

so as to be representative of the original material. 
Future work will use a more sensitive detection 

device (FTIR spectrophotometer). It should improve 
the spectral resolution of the determined radiative 
properties as well as the identification process since 

many more measurements points will be available. 
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